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ABSTRACT 

Every element r of reduced trace 0 in a simple finite dimensional algebra 
R is a sum of at most 2 commutators. If R in not a division ring then r is a 
commutator, unless r is a scalar (in which case char(R) ¢ 0). The method 
of proof provides a generic division algebra of transcendence degree n 2 - 1. 

I n t r o d u c t i o n  

Th roughou t  th is  p a p e r  R is a finite d imens iona l  centra l  s imple  a lgebra ,  wi th  

center  F.  Then  R ®F F ~ M n ( F )  where F is the  a lgebra ic  closure of F,  and  

the  r e d u c e d  t r a c e  of an  e lement  r in R is defined as the  t race  of the  m a t r i x  

cor responding  to  r ® 1 in M n ( F ) .  Thus  for any  c o m m u t a t o r  r = [a, b] = ab - ba 

we have t r ( r )  = 0, and  we adddress  the  converse ques t ion 

QUESTION 1: / f  t r ( r )  = 0 then is r a commuta to r?  

This  is obvious for R = f (since then  t r ( r )  = r ) ,  and  is also t rue  for R = 

M , ( F ) ,  cf. [6],[2]. A l t h o u g h  the  answer is unknown in general ,  the re  are  various 

pos i t ive  resul ts ,  inc luding for n = 2, 3 (Theorem 0.10). Also i t  t u rns  ou t  in 

genera l  t h a t  r is a sum of a t  mos t  two commuta to r s ,  and  we prove a s l ightly 

s t ronger  fact.  A c t u a l l y  there  are  two proofs,  one of which involves Brauer  factor 
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sets (§3) and yields considerable extra information about generic matr ix  algebras, 

which we include as an appendix at the end. 

We cannot yet answer Question 1 for a division algebra D, and its general 

answer seems to rely on properties of quadratic forms. We do have an affirmative 

answer for R = M,~(D) whenever n > 1, unless the matr ix  is scalar and n is prime 

to the characteristic of F.  The proof is rather intricate, utilizing the other results 

of this paper, so we give a weakened result first (Theorem 1.10) and then the 

full result in section 2. The case where the matrix is scalar but n is prime to 

p = deg D = char(F) is particularly intransigent, and is discussed separately. 

The results of section 1 contain some facts concerning normal forms of matrices 

which might be of independent interest. 

O. S o m e  easy  spec ia l  cases  

Remark 0.1: If ac = ca then [a, bc] = [a, blc and [a, cb] = e t a ,  b I. 

Remark  0.2: The difference of any element b and any conjugate of b is a com- 

mutator.  Indeed 
aba -1 - b = [a, b]a - I  = [a, ba-l].  

Conversely, writing b = ca -1 we see [a, b] = aca -1 - c. Thus every commutator  

is a difference of conjugates, so Question 1 is equivalent to: if t r ( r )  = 0 then is 

r a difference of two conjugates? Viewed in this way the question has a rather  

easy answer in several special cases. 

PROPOSITION 0.3: Suppose K / F  is a cyclic field extension wi th  K C R.  Then 

any element r o f  K having trace 0 (with respect  to the field extension)  is a 

c o m m u t a t o r  in R.  

Proof." Write r = a(b) - b for suitable b in K, by the additive form of Hilbert 's  

theorem 90. Then there is invertible a in R such that  a(b) = aba -1,  so 

r = a ( b )  - b = a b a  - I  - b = [a, ba - I ]  

by Remark  0.2. | 

N o t e :  If  a = t rK /F  r then t r  r = r ~ a ;  thus if K is a maximal  subfield or 

more generally if char(F)  ~ ~ then t rK /F  r = 0 is equivalent to t r  r = O. 

On the other hand, we have 



Vol. 87, 1994 ELEMENTS OF REDUCED TRACE 0 163 

Remark 0.4: The map 0a: R --* R given by r ~-* [a,r] is a C R ( a ) - C R ( a )  

bimodule map, where CR(a) is the centralizer of a. Furthermore, ker Oa = CR(a), 

and im 0a = [a, R]. (The first assertion is by Remark 0.1, and the remainder is 

immediate.) 

In characteristic p > 0 we are aided by inseparable elements (if they exist). In 

the next few results, D is a division ring with center F. 

Remark 0.5: Suppose char(F)  = p and a E D is purely inseparable. Then 

a p* E F for some t. Hence 0~ = [a, ] is a nilpotent derivation, by Leibniz' rule 

((Oa)Pt(d) = [aPt,d] = 0 for all d in D). Thus D D O~D.D O~D D . . .  D O~D = 0 

for suitable m; by Remark 0.4 this is a chain of vector spaces over the division 

ring CD(a). But ker(0a) = CD(a) has dimension 1, so each space has CD(a)- 

codimension 1 in the preceding space (since the chain cannot stabilize before 0), 

and we conclude m = [D: CD(a)} = dega.  Hence O~D has dimension m - u, and 

is clearly contained in k e r 0 ~  -=, which also likewise has dimension m - u  (since 

ker 02 has dimension u), so we conclude 

O ~ D = k e r O ~  -~ for a l l 0 < u < m .  

LEMMA 0.6: H a  E D is purely inseparable over F and O~(d) = 0 for u < dega  

then d • [a, D]. 

Proof'. Let m = dega.  By Remark 0.5, d • O~-~'(D) = [a, OF-=-l(D)]. t 

THEOREM 0.7: I[ d • D commutes with an element a which is not separable 

over F then d • [a, D]. (Note this hypothesis requires characteristic p > 0.) 

Proof: Let F1 be the maximal  separable extension of F inside F(a).  Replacing 

D by CD(F1), which contains both  a and d and whose center is F1, we may 

assume a is purely inseparable over F. Then Oa(d) = [a, d] = 0, so d • [a, D] by 

Lemma 0.6. | 

COROLLARY 0.8: 

(i) I f  a is not separable then a • [a, D]. 

(ii) / f  D has an inseparable dement  then 1 is a commutator. 

COROLLARY 0.9: / [  deg R = 2 then every element of  R having trace 0 is a 

commutator. 

Proof." If R = M2(F)  this is a theorem of Shoda and Albert-Muckenkoupt ,  to 

be discussed below. Thus assume R is a division ring, Then every subfield of R 
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is Galois or inseparable over F, so we are done by Proposition 0.3 and Theorem 

0.7. II 

The degree 3 case also is quite straightforward. 

THEOREM 0.10: I /deg  R = 3 and tr(r)  = 0 then r is a c o m m u t a t o r .  

Proof." Again we may assume R is a division algebra. By [7] there is a in R with 

a 3 • F such that  the minimal polynomial of r has the form 

( ~ - a 2 r a - 2 ) (  A - a r a - 1 ) ( . ~  - r ) ,  

so 0 = tr(r)  = a 2 r a  - 2  + a r a  - 1  + r. Hence 

0 = a r a  - 1  + r + a - I r a  = ( a r a  - 1  - r )  + ( a - i r a -  r )  + 3r, 

implying 

- 3 r  = In, r a - 1  _ ( =   -111). 

If char(F)  # 3 then r is a commutator,  as desired. 

It remains to consider the case that char(F) = 3. Then 3r = 0 implying [r, a -1] 

commutes with a, so is in F ( a ) ,  since every subfield of R properly containing F 

is maximal. Thus the inner derivation 0 on R given by [a -1, ] satisfies c92r = O. 

Note that  a is inseparable in this case, so r is a commutator by Lemma 0.6. 1 

N o t e :  In the proof above, one has to be sure that a exists for each r in R. This 

is implicit in [7], but let us deal with this point in detail. If one puts r '  = u r u  - 1  

then, by [4, Remark 3.2.17], 

r2 = (r '  - r ) r ' ( r '  - r) -1 = [u, r]r[u,  r] -1 

(provided [u, r] # 0) and a = Jr, r2]. Thus one needs r2 does not commute with r 

for suitable u in F. This is clear unless r2 • Fir] ,  but in this case F[r] is Galois 

over F, and the existence of a is assured by the Skolem-Noether theorem. 

N o t e :  Actually this argument shows more generally for any algebraic element r 

of degree 3 and reduced trace 0, that  r is a commutator. 

D. Haile has pointed out that  for algebras of degree p and characteristic p an 

affirmative answer to question 1 would imply cyclicity. This follows from Remark 

0.2 and 
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PROPOSITION 0.11 (Hail@ I fdeg (D)  = p = char(F) then D is cyclic i f f  i is a 

commutator .  

Proof'. (:~) Take any maximal  cyclic subfield. It  contains 1, so apply Proposition 

0.3. 

( ~ )  By Remark 0.2, 1 is a difference of conjugates, i.e., 

1 = b - aba -1 

for suitable a, b in D; thus aba -1 = b - 1 ,  so F(b) has the nontrivial automorphism 

a(b) = b - 1 of order p, implying F ( b ) / F  is cyclic. | 

An easy result probably due to P.M. Co/an is relevant (and tantalizing): 

Remark  0.12 (Cohn): Suppose d E D is given, and a, b E D are given and no___At 

conjugate. Then there is some c • D such that  ac - cb = d. (Indeed, the map  

~: D --* D given by ~(c) = ac - cb is injective, for if 0 ¢ c • ker ~ then ac = cb 

so c - l a c  = b, contrary to hypothesis. Thus [~(D): F] = [D: F] so ~(O)  = D.) 

1. P o s i t i v e  r e s u l t s  for  m a t r i c e s  

In this section we want to show that  if question 1 is affirmative for D then it is 

also true for M n ( D ) .  This generalizes Shoda's theorem [6] (for D = F) ,  but will 

be improved shortly, in §2. We shall use throughout the fact that  any conjugate 

u[a, b] u -1  of a commutator  is a commutator  ([uau -1,  ubu-1]).  

We star t  with some easy consequences of Remark 0.4. 

PROPOSITION 1.1: f i r  is an algebra over a field F then d im  C n(  a ) + dim[a, R] = 

dim R. (Here "dim" denotes dimension as vector space over F.) In part icular i f  R 

is central s imple  o[ degree n over F, and F (  a ) is a max ima l  separable commuta t i ve  

subalgebra o f  R,  then dim[a, R] = n 2 - -  n. 

Proof: The first assertion follows from Remark 0.4. The second assertion is true 

since d i m R  = n 2 and dimC•(a)  = n (since Cn(a)  = F(a) ) .  | 

LEMMA 1.2: Suppose a = d i a g { a l , . . ,  an} is a diagonal ma t r i x  in R = M n ( F ) ,  

with a l , . . .  , an  distinct.  Then [a, R] is the set of  matrices  whose diagonal entries 

are all O. 

Proof: Clearly Ca(a)  = {all diagonal matrices}, which has dimension n. By 

Proposition 1.1 we see dim[a, R] = n 2 - n. But let 

V = {matrices whose diagonal entries are all 0}. 
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Then [a, R] C V since for r = (rij) the i - i term of [a, r] is air, i - a,  ri, = 0. But 

also dim V = n 2 - n so [a, R] = V, as desired. | 

Remark 1.3: Lemma 1.2 in conjunction with Remark 0.4 shows that  R ~ F(a)~) 

V as F(a) - F(a) bimodules, where a is any diagonal matrix having distinct 

entries• 

We are now ready to review Shoda's short proof in the characteristic 0 case. 

First he quickly shows for any matrix of trace 0 (in characteristic 0) there is a 

suitable similar matrix A for which all the diagonal entries are 0; we shall call 

this a 0-d iagonal  m a t r i x .  But then for any diagonal matrix a with distinct 

diagonal entries we have seen that In, Mn(F)] consists of all 0-diagonal matrices, 

so A • [a, M,~(F)], as desired• 

We want to carry out this argument in general. 

LEMMA 1.4: Suppose R = Mn(D) with deg(D) = t, and a = d iag{d l , . . . , dn} ,  

with d l , . . .d~  nonconjugates each of degree t in D (over F = Z(D)).  Then 

[a ,  R]  = . .  , 

[e.,D] 
i.e., the off-diagonM entries are arbitrary, and the i-th diagonal ent ry /s  in [di, D]. 

Proof: dim[di, D] = dim D - d e g  di = t 2 - t .  Thus the dimension of the right hand 

side is (n2 -n ) t2+n( t2 - t )  = n2t 2 -n t .  But F(a) is separable in R of dimension nt  

so is maximal separable, so Proposition 1.1 implies dim[a, R] = (nt) 2 - nt. Thus 

the left hand side and right hand side have the same dimension, so it remains to 

show that  every element In, R] has the form of the right hand side. This is clear, 

for if r = (dij) then the i - i entry of [a, r] is [d~, d~] • [di, D]. | 

Let us refine this a bit more• 

LEMMA 1.5: Let R = Mm+n(D). Suppose a • Mm(D), b • Mn(D), and write 

S = [a, M~(D)] ,  T = [b, M,~(D)], and Ca, Cb for the respective centralizers of a, b 

in Mm(D) and Mn(D). If  

then 

[(0 ;) 
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(where • denotes arbitrary entries). 

Proof: Let t = deg D. The  left hand  side is contained in the  right hand  side, 

a n d t h e l e f t h a n d s i d e h a s d i m e n s i o n ( ( m + n ) t ) 2 - d i m C R ( o  0b) • But  

d i m / S  T )  = d i m [ a ,  M,,~(D)] + dim[b, Mn(D)]  + 2mnt 2 

= (mt)  2 - d im Ca + (nt) 2 - dim Cb + 2mnt 2 

= ( (m + n)t)  2 - (d imCa  + d imCb)  

= ( ( m + n ) t ) 2 _ d i m C R ( o  O) 
b ' 

implying equali ty holds. | 

Let us verify the condit ion of l e m m a  1.5 for a dense set of matr ices.  Firs t  we 

need a result  abou t  matr ices  which must  be well-known. 

LEMMA 1.6: Ira 6 Mm(F) and b 6 Mn(F) have no common eigenvalue then 

av = vb cannot hold for any  m x n m a t r i x  v # 0. 

Proof." Passing to  the algebraic closure, we may  assume F is algebraical ly closed, 

so a is t r iangular izable,  i.e. we m a y  assume 

.) 
ann 

w h e r e  a i i  are the  eigenvalues of a. Wri t ing v = (vii) and  b = (bo) ,  we see 

a,~mvmj = ~ vmibij for each j, so (vmx,. . . ,  V,~n) is an eigenvector for b t, with 
i = l  

eigenvalue am,~. By our hypothesis  (vml . . . .  , vm, )  = 0; we conclude by  induct ion 

on m.  | 

Note: In  case a = diag{dl  . . . .  din} is diagonal,  one can weaken the  hypothes is  

to "each d~ has  an eigenvalue which is not  an  eigenvalue for b." T h e  p roof  is 

similar.  

PROPOSITION 1.7: Suppose a 6 Mm(D) and b 6 Mn(D) have no c o m m o n  eigen- 

values. Then 
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0 can be part i t ioned as where u E Ca, 

y E Cb, and v is m × n, w is n × m, satisfying a v  = v b  and w a  -= b w .  By s y m m e t r y  

it suffices to show v = 0; passing to M , ~ ( F )  where F is the algebraic closure of 

F, we conclude by L e m m a  1.6. I 

:) 
where A is O - d i a g o n a l  of  size ( k  - 1) x (k - 1) and d E D. 

P r o o f "  In  three steps. (Some of the computa t ions  could be deleted by use of 

the rat ional  canonical form, but  we give a self-contained proof  for the reader 's  

convenience.) 

(i) The  case k = 2. Let 

Then  

= - c u  + d " 

If  c ~ 0 we choose u = - a c  - 1 ,  and obtained the desired form. If  b ~ 0 then an 

analogous computa t ion  works. Finally, if c = b = 0 then taking u in (1) such 

tha t  - a u  + u d  ~ 0 reduces us to the case where b ¢ 0; thus we are done unless 

- a u  + u d  -~ 0 for all u in D; in part icular  - a  + d = 0, i.e. a -~ d, and a = d E F. 

(ii) The  case k = 3. Note r has three principal 2 x 2 submatrices;  since r is 

not  central, one of these submatrices is not  central, and thus by (i), exchanging 

rows and columns if necessary, we may  assume 

r ~  u . 

w 

In case . ( :  :) 
is noncentral  we apply (i) to  B,  to get r conjugate to  a mat r ix  of the form b) 

r - - - -  0 v , 

w z 
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as desired• Thus  we m a y  assume B is central ,  i.e. b) 
r= a 0 , 

0 a 

with  a central .  F i r s t  assume c # 0. Then  

(1 a b)(1 
0 1 c a 0 0 1 
0 0 d 0 a 0 0 

= C - - C ~  -[-  O~ - - C V  . 

d - d u  - d v  + a 

--1 

If  c # 0 then  take  u = - d c  -1 and v = 1, and  we conclude by (i), app l ied  to  

the  the  b o t t o m  r igh t -hand  2 x 2 submat r ix .  If d # 0 then  argue analagously;  

s imi la r ly  if a # 0 or b # 0. Thus  we may  assume a = b = c = d = 0, i.e. ( 00) 
r =  a 0 ; 

0 a 

con juga t ing  now by 
(11 ) 

- 1  0 yields  0 * 
1 1 • 2a  

, SO we are done. 

(iii) T h e c a s e  k >_ 3. We replace  r by  a conjugate  ( .A  ; ) , w h e r e  A is 0- 

d iagona l  of m a x i m a l  possible  size m x m and B has size n x n (where n = k - m) .  

Argu ing  as  in (ii) one has  m > 1. Then  in fact  m = k - 1  and  n = 1, since 

otherwise  we could choose the  pr inc ipa l  minor  s u b m a t r i x  de t e rmine d  by  the  last  

row and column of A and  the  first two rows and columns of B,  and  app ly  (ii) to  

get a m a t r i x  conjuga te  to  r ,  s t a r t i ng  wi th  a 0-diagonal  m a t r i x  of size m + l  x r e + l ,  

con t r a ry  to  assumpt ion ,  m 

PROPOSITION 1.9: In characteristic p # 
matrix d.  In is a commutator. 

0 

Proof: din = 

0 
0 

O, i f  n = 0 (rood p) then any scalaz 

0 0 / ( i 0  0d 2 0 0 ... 0 0 

• .. • , d . . .  0 0 

0 . . .  n - 1  
0 . . .  0 0 d 0 
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THEOREM 1.10: Suppose D is a division ring in which every element of  (reduced) 

trace 0 is a commutator. Then the same holds for R = Mk(D)  for any k. 

Proof: We may assume F --- Z (D)  is infinite (since otherwise D -- F so we are 

reduced to [2] and [6]). 

Take any r E R -- Mk(D)  of reduced trace 0. We want to show r is a com- 

mutator.  First assume r is noncentral. By Proposition 1.8 we can put r into the 

form ( A  * ~ where A is a 0-diagonal matrix and d E V. Then tr  d = 0 so by 
\ a / 

assumption d = Iv, w] for suitable v, w in D. Taking any diagonal m x m matrix 

A J whose eigenvalues are distinct from those of v (possible since F is infinite), 

(:, 0) (0 ) we see Ca  A' 0 (in the notation of Proposition 1.7), so 
= cv 

by Lemmas 1.4 and 1.5, i.e. r is a commutator.  

Thus we are done unless r is central and thus char(F)[k,  but then r is a 

commuta tor  by Proposition 1.9. | 

Note: Although we reduced to the case F is infinite, we only need IF[ _> k (so 

that  there are "enough" elements of F to miss the eigenvalues of v). Then the 

proof of this theorem also yields [6] and [2] (for IF[ > k). 

2. Arbitrary central simple algebras 

In this section we want to obtain a result for a single commutator for an arbitrary 

central simple algebra R of degree k. 

Note 2.0: As Saltman has observed, a Zariski topology argument (passing to 

M,(F)) also shows that the set of commutators is Zariski dense in the set of 

elements of trace 0. 

Unfortunately we have not obtained a single commutator result for an arbitrary 

element r in a division ring, but can show r is a sum of two commutators, with 

one of the elements in the commutators pre-determined. We need to reduce to 

the case of matrices; although the Zariski topology would suffice, we shall employ 

the following method of passing to matrices: Recall the Capelli polynomial (in 

noncommuting indeterminates) 

C2t-l{X1,..., X2t-1} = ~ (sg ~r)X,~lXt+lX,~2Xt+2"" X2t-lX~t, 
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([4, p.12]), and given a subspace V of R write C2t- I (V)  for { C 2 t _ l ( V l , . . .  , vt, Xl, 

• . . ,Xt -1):  Vi • V, x~ • R}. Since C2t-1 is t-normal we see C2t- I (V)  = 0 

whenever d imV < t. On the other hand, if R = M~(F)  and d imV = t then 

C2t-I(V) ~ 0, as seen either as a consequence of [4, proposition 1.4.7] or by 

modifying its proof. Thus we have 

LEMMA 2.1: Suppose R is central simple of degree n, and 

V C_ {elements of  reduced trace 0}. 

Then C2n2_3(W) = 0 unless V = (elements of reduced trace 0}. 

Proof: Pass to R ®F F ~, Mn(F)  where F is a splitting field, and its subspace 

V ®F F ,  which has dimension _< n 2 - 1 over ft. | 

THEOREM 2.2: Suppose R is central simple of degree n, and a E R has n dis- 

tinct eigenvalues. Then there exists c E R such that for any r E R of reduced 

trace 0 there are b,d in R such that r = [a,b] + [c,d], i.e. [ a , R ] + [ c , R ]  = 

{dements  of trace 0}. 

Proof: If F = Z(R)  is finite then R ,~, Mn(F) ,  so we may assume F is in- 

finite. We shall show there is c in R for which [a, R] + [e, R] = V, where 

V = {elements of reduced trace 0}. Indeed, otherwise, [a, R] + [c, R] < V, for 

any c in R, so letting 

y y  = C2nz_3([a, X l l  ] -3r" [Y, X12] , . . .  , [a, Xn,_ l ,1]  -t- [Y, Xn2_l,2],  X n 2 , . . . ,  X2nz_3) 

for noncommuting indeterminates X~I, Xi2 (1 < i < n 2 - 1), Xj  (n 2 _< j _< 

2n 2 - 3), and Y, we see f y (V)  = 0 (for any prior substitution y of Y in R). But 

fy is linear in the Xij, so f y (V  ® F)  = 0 in R ® F ..~ Mn(F)  where F is the 

algebraic closure of F for all y in R. 

Since F is infinite, a standard argument shows f~ (V  ® F) = 0 for all y in 

R@ F. (Namely, take a base b l , . . . , b k  a base of V; then for y = ~ a i b /  the 

fact f y (V)  = 0 translates into a set of polynomial conditions in h i , . . . ,  ak, which 

are satisfied for all a~ in F and thus for all a~ in F since F is infinite.) Hence 

[a, Mn(ff)] + [c, M,~(F)] has dimension < n 2 - 1 for all c in Mn(F) .  

On the other hand we could take a base of F('~) for which a is diagonal, and 

with respect to this base, [a, Mn(F)] is the set of 0-diagonal matrices. Thus, 
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to arrive at a contradiction it suffices to find a matrix c such that [c, M,~(F)] 

contains the diagonal matrices of trace 0. But 

i 1 0 . . .  0 0 1 . . .  0 

0 0 . . .  1 
0 0 . . .  0 

satisfies that property, since [c, ~ aiei+l,i] = diag{al - a2, a2 - a3, • •.,  an - o~1 } .  

| 

We shall now verify question 1 when R = Mk(D) for k > 1. Our main result 

along these lines is 

THEOREM 2.4: Suppose R = Mk(D) is central simple, with k >_ 2. Then any 

noncentral element of R having reduced trace 0 is a commutator. 

Proof." By induction on k. Let F = Z(D). 

First we assume k _> 3, and assume that Theorem 2.4 is known to hold for 

Mm(D) whenever i < m < k. Suppose r E Mk(D) with tr(r) = 0. By Proposition 

1.8, r is conjugate to ( 0, ; ) ,  w h e r e B i s a n o n c e n t r a l ( k - 1 )  x ( k - 1 ) m a t r i x  

having reduced trace 0. By induction one may write B -- [P, Q] in R' = Mk-1 (D). 

Taking any a in F distinct from the eigenvalues of P, we see by Proposition 1.7 

that ~(o o)(; ~0) 
since a commutes with all elements of D. Hence Lemma 1.5 shows 

[(o o),] (0, ,;~,) 
which contains ( :  ; )  since ~ ~ E~ R'1 This proves T isco~ug~te to acom 
mutator, so is itself a commutator, thereby concluding the reduction. 

It remains to verify the 2 x 2 case. We shall show that  any matrix of the form 

dll  d 1 2 ) i n M 2 ( D ) , h a v i n g r e d u c e d t r a c e 0  (i.e. t r (d11+d22)=O),butwi th  
d21 d22 

d21 having distinct eigenvalues and tr(d21) ¢ 0, can be written as 

a22 ' k,521 522 ] J  
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for suitable alj, bij in D. This will prove the theorem in general since 

(10 y0)(dll d12 ) (10 0y) 1- __ (dll d12 ~ 1 0 
d21 d22 ~yd21 y d 2 2 ) ( 0  y - l )  

( d l l  dl2Y - I  
= ~, yd21 yd22Y -1 ) 
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so choosing y suitably we can arrange for the 2 - 1 position of the conjugate to 

have distinct eigenvalues, with tr(d21) ¢ 0. 
The proof is divided into two steps: 

CLAIM 1 : There is some d112 in D and suitable aij, bij in D, with all not conjugate 

to a22 in D, such that 

(2) [ ( ;11  a12"~ (511 0 ) ]  ( d l l  d~2) 
a22 ] ' 1 b22 : d2t d22 " 

CLAIM 2: Given aij as in Claim 1 and taking d'l' 2 aritrarily in D, there is b12 in 

D such that 

(3) [(;11 a12)(00 5012)] : (00 472) a22 ~ 0 " 
Given the two claims, take d~2 = d12 - d~2; then 

[(all a12)(b111 512)] (dll d~2 ~ (00 d12-d~2 ) 
0 a22 ' 522 = \d21 d22J + 0 

: ( d l l  d12) 
~,d21 d22 " 

Proof of Claim 2: 

[(all0 a22a12) ' (~ b;2)] : (~ a11b12-b12a22)O 

so we need to find b12 in D such that a11b12 - b12a22 = d~2. Since all and a22 
axe presumed nonconjugate, 512 can be obtained via Remark 0.12. 

Proof of C/aim 1: The 1-2 position is irrelevant, so matching the 1-1, 2-1, and 

2-2 positions we must solve the following three equations: 

(4) [all, bll] -{- a12 -- dll, 

(5) a 2 2 - a l l  =d21, 
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(6) [a22, b22] - a12 = d22. 

(Then a22 and al l  will be nonconjugate since d21, their difference, has reduced 

trace ¢ 0.) 

Solving (4) and (5) give respectively 

(4') a12 = d l l  - [ a l l ,  b i l l ,  

(5') a22 = d21 + a11, 

so we could use these two equations to define a12 and a22; plugging into (6) leaves 

us with the following equation: 

[d21 + a11, b22] - (dll - [a11, b11]) = d22, 

or  

(7) [d21, b22] + [ a l l ,  b22 + b l l ]  = d l l  + d22' 

By Theorem 2.2 there are u, v, w in D such that 

[d21, u] + [v, w] : dll  + d22. 

Take b22 : u,  a l l  : V, and bll = w - u. 1 

Digression: Actually we proved the stronger result that any noncentral 2 x 2 

matrix of reduced trace 0 is similar to a commutator [A, B], where 

:) 
Interestingly enough, this might fail for scalar matrices, since it turns out to be 

equivalent to the cyclicity of the underlying division algebra (which in general is 

a difficult open question). Indeed, suppose deg D = p ¢ 2 is prime and 

a 2 2 ] '  b21 b22 0 1 " 

Matching the 1-1, 2-1, and 2-2 matrix components yields the equations 

(9) [a11,511] + a12521 = 1; 

(10) a22b21 - b21all = O; 

(11) [a22b22] - b21a12 = 1 .  
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Then (9) yields a12 = (1 - [a11, b11])b2-1; plugging into (11) yields 
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[a22, b22] + b21[a11, b11]b211 -- 2. 

Thus 

2 : [b21a22521,5211522521]-{-[a11,511] 

---- [ a l l ,  5211522521 ] + [ a l l ,  511] ---- [ a l l ,  521522521 -{- 511]. 

Thus D is cyclic, by Proposition 0.11, as desired. 

To try to solve 
( 1  0 )  

[A'BI= 0 1 

computationally without any prior restrictions, one may assume that  A is in 

rational canonical form, i.e. 

Then we generalize the equation to 

[(: :) 
I t i s e a s y t ° s e e t h a t B m u s t h a v e t h e f ° r m (  d - c b  d )  so then 1 +ca 

u = [a, c~ - acb + +b +bca, 

v = [a, c] + [5, a] - 1. 

The question remains as to whether a, b, c, d can be chosen such that  u = 0 and 

v = 1. This seems to be a difficult computational question. 

There always will be a solution in the following situation: Suppose deg(D) = 

p = char(F), and there is a field K of dimension 2 over F,  such that Ro = D®FK 

is cyclic. Then by Proposition 0.11, 1 is a commutator in R0, and thus in M2(D). 

Although this seems like a special case, it is actually quite general, as is seen in 

the digression after Corollary 3.3'. 
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3. T h e  use  o f  B r a u e r  factor  sets  

One can obtain  some of the results of §2 more explicitly, using Brauer  factor  sets. 

Recall from [3] tha t  if K = F(a)  is a maximal  separable subfield of a central  

simple F-a lgebra  R of degree n and E is the normal  closure of K,  then viewing 

G = G a I ( E / F )  as a transit ive subgroup of Sn we can write R as 

( ( r i j )  E Mn(E) :  r~,i,~,j = rij for all i , j  and all a in G}; 

multiplication in R is given in terms of a Brauer .factor set {cijk: 1 <_ i, j ,  k < n} 

by the formula 
= 

" = ~ ' = 1  cijkrijr;k" The Brauer  factor set {cijk} C E -  {0} satisfies the w h e r e  rik 

two conditions 

(12) c~i, , j , ,k = cijk for all a in G 

(13) CijkClkm -~- CijmCjkm. 

In  par t icular  taking k = m in (13) one sees cikk = Cjkk for all i, j ,  k; likewise 

ciij = ciik for all i, j ,  k. One can in fact normalize and assume c~jj = ci~j = 1 for 

all i , j .  Fur thermore  if n is odd then one may  assume ciji = 1 for all i , j  (cf. [5]). 

Remark  3.1: K = {elements of R which can be wri t ten  as diagonal  matrices}. 

Remark  3.2: If  r = (r~j) E R then a = diag{rxl , . . . , r ,~,~} E R, so r - a E R. 

Thus  any r in R is wri t ten uniquely as the sum of an element of  K and an element 

all of whose diagonal entries are 0. 

PROPOSITION 3.3: Viewed in this notation, [a, R] consists precisely of  those 

elements whose corresponding matrices are O-diagonaL 

Proof: Let 

V = {elements of R corresponding to  matrices having 0 on the diagonal}. 

Remark  3.2 says R ~. K (~ V as K - K bimodules  in analogy to  remark  1.3. 

But  then dim V = n 2 - n = dim[a, R]. (The centralizer of  a is K = F(a) .)  

Fur thermore  writ ing a = d i a g { a l , . . . , a n }  and r = (r i j)  we see tha t  the i - i 

ent ry  of the  mat r ix  corresponding to  [a, r] is a~c~irii - riic~ia~ = O. 1 
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COROLLARY 3.3': In the above notation R = F[a] ~) [a, R]. 

Digression: In general, the same sort of argument shows that F[a] N [a, R] = 0, 

whenever a is a separable element of R such that F[a] is a maximal commutative 

subalgebra of R (so that  a can be written diagonally in terms of F[a]). In 

particular, suppose F has characteristic p > 0; note that if 1 = [a, b] then a and 

b must be inseparable. But this means F[a p] C F[a], and thus the centralizer R' 

of a p is a cyclic algebra, by a theorem of Albert [1]. For example, if R = M2(D) 

with deg D = p then we see that R contains a cyclic algebra of degree p =char(F) ,  

and the question as to whether the identity 2 x 2 matrix is a commutator  can 

be translated to the question as to whether R contains such a cyclic subalgebra. 

This is another famous question about cyclicity, and also is likely to be very 

difficult. 

THEOREM 3.4: Suppose R is central simple over F, of odd degree n, r E R has 

reduced trace 0, and a E R is arbitrary such that F(a) is a maxima/separable  

subalgebra of R. (For example ff deg R is prime and char(F) = 0 then a could 

be any element of R - F.) Then one can find b, c, d in R for which 

r = [a, b] + [c, d]. 

Proof'. We represent R as matrices in terms of a normalized Brauer factor set 

{c~jk} and g = F(a), i.e. c~ji = 1 for all i , j ,  cf. [5, theorem 4]. The same set of 

matrices with the trivial Brauer set (i.e. taking 1 for each cijk) defines a matrix 

algebra R' isomorphic to M,~(F), cf. [3],[5].) By the theorem of Shoda and 

Albert-Muckenkoupt, we have matrices u, v such that r = [u, v] inside R'. But 

writing u = (uij) and v = (vii), we see the i - i diagonal term of [u,v] taken in 
n n 12 

R is E j = I  ui jc i j iv j i  - E j = I  v i j e i j iu j i  = E j = l ( U i j V j i  - v i j u j i ) ,  the diagonal term 

of the matrix of r. Thus the matrix [u, v] - r has diagonal 0, so by proposition 

3.3 [u, v] - r • [a, R]. We conclude r = [a, b] + [u, v] for suitable b in R. | 

Note: Although this result is contained in Theorem 2.7, its proof seems to be 

more amenable to improvement. Here is another application. 

A p p e n d i x  t o  3: A p p l i c a t i o n  t o  gene r i c  m a t r i x  a lgeb ras  

Let UD(n, F) be the generic F-division algebra of degree n, which is well-known 

to be the algebra of central quotients of the algebra F{X1,  X2} of generic matri- 

ces. One may assume X2 is diagonal (since any matrix with distinct eigenvalues is 
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diagonalizable over the algebraic closure of F) ,  so writing X2 = d i a g ( a l , . . . ,  an) 

one could take K = F(X2) and write UD(n ,  F )  in terms of Brauer factor sets. 

Of course replacing X2 by X2 - t r  X2 we could take an = (al + " "  + an - l ) .  

The point to be made here is that  X1 could then be replaced by an element 

whose corresponding matr ix  has zeroes on the diagonal (in view of Remark 3.2), 

so U D ( n ,  F )  contains of the algebra Ro generated by the matrices 

X l = ( ~ i j )  w h e r e ~ i = 0  for l < i < n ,  

X2 = d i a g ( a l , . . . a n )  where an = - ( a l  ÷ ' "  ÷ an-l); 

here the ~ij (i ~ j )  and a l , . . . ,  an-1 are commuting indeterminates over F. Note 

the transcendence degree is (n 2 - n) + (n - 1) = n 2 - 1, which is less than the 

usual result of n 2 + 1 (see [4, corollary 1.10.29]). 

4. G e n e r i c  e x a m p l e s  

I t  remains to see whether Question 1 holds in general, or even for cyclic algebras of 

degrees > 3. In this section we shall construct the generic "solution" to Question 

1, for cyclic algebras. (However, we still cannot answer the question for cyclic 

algebras.) For convenience we work in characteristic 0. 

Let Fo be a field containing a primitive n-th root p of 1, and let F be a purely 

transcendental field extension over Fo in commuting indeterminates #, ~, ~/ij, 0 < 

i , j  <_ n - 1, with ( i , j )  ~ (0,0); let R be the symbol (/~,v),~, i.e. R is generated 

as an algebra by elements x, y such that  x n = #, yn = V, and x y  = pyx .  The 

generic element of trace 0 is then ~o<_~,j<,~-I "Y~jx~Y ~ where ~/oo = 0. So we want 

to solve 
1 

o<i,j<n-1 0<~,i<n--1 ] 

for suitable a i j ,  flij in F;  we may assume a0o = Boo = 0. Suppose we have a 

solution for certain flij. To recover the ai j  we could solve a system of n 2 - 1 

linear equations obtained by matching the coefficients of x i y  j for 0 <_ i, j _< n - 1 

( ( i , j )  ~ (0, 0)). Note that  

a x s t = s tpuv(p  • t y , f luvxUy v] a ~" , t u _  p,V)x,+Uyt+V, 

so given i , j  for any fixed u, v there is one possible s, t such that  s + u  - i (mod n) 

a n d t + v = j  ( m o d n ) .  



Vol. 87, 1994 ELEMENTS OF REDUCED TRACE 0 179 

If  Question 1 could be answered positively for this algebra then it would be 

answered positively for all cyclic algebras. However, the calculations for this 

example are still quite intricate, and seem to become involved with the arithmetic 

of the field. 
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